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Abstract

A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs
can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant.
How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage
when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the
most important classes of sounds, animal vocalizations? How does naturalistic acoustic experience shape cortical sound
representation and perception? To answer these questions, we need to consider an unusual strategy, statistical learning,
where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain
statistical structures of natural animal vocalizations shape auditory cortical acoustic representations, and how cortical plastic-
ity may underlie learned categorical sound perception. These results will be discussed in the context of human speech
perception.

Introduction

Learning has been defined as an enduring change in the mechanisms
of behavior that results from experience with the environmental
events (Domjan, 2010). Perceptual learning is the specific and rela-
tively permanent modification of perception and behavior following
sensory experience (Fahle & Poggio, 2002). Exposure to specific
acoustic experience in the critical period of early sensory develop-
ment alters cortical sound representations (Zhang et al., 2001) and
perceptual behavior (Han et al., 2007; Kover et al., 2013), and
therefore is a process of perceptual learning. However, this type of
perceptual learning through sensory exposure is unique in that it
does not involve an explicit training process (Keuroghlian & Knud-
sen, 2007); there is no instruction of the desired response or feed-
back on the actual response. In the absence of instructions or
feedbacks, how does the auditory system know what and how to
learn in order to adapt to its specific acoustic environment?
Perceptual learning may be classified into three categories: unsu-

pervised, supervised and reinforcement learning. In reinforcement
learning, feedback is provided on whether the response is correct
(e.g., tell me what sound you are hearing; no, that is not correct). In
supervised learning, the desired response is provided (e.g., now I
am going to play the sound of/la/; learn it.). Reinforcement learning
is sometimes regarded as a form of supervised learning. In unsuper-
vised learning, however, the subject is left alone to discover the
structures of a stimulus ensemble without instructions or feedback
(e.g., I am going to play a long sound stream; tell me all the struc-
tures in it that you can find). This is achieved through statistical
learning, a process of reshaping perception according to the statisti-

cal structures of a stimulus ensemble (e.g., an acoustic environment).
Although statistical learning per se does not need feedback, it can
be performed in a reinforcement context (Toro & Trobalon, 2005).
Both humans and rodents are sensitive to statistical structure of

acoustic input such as stimulus probability and conditional probabil-
ity distributions. For example, exposure to sounds distributed along
a phonetic continuum affects the subsequent discrimination of those
phonemes in rats and humans (Maye et al., 2002; Pons, 2006).
Human infants and adults are sensitive to stimulus transitional prob-
ability, and can use it to identify speech sound sequences or tone
sequences that are repeating in a continuous acoustic stream (Saffran
et al., 1996, 1999). Rats are also sensitive to conditional probability
such as co-occurrence of sounds in a sequence (Toro & Trobalon,
2005). The neural mechanisms underlying this type of statistical
learning are unknown.
The auditory cortex is remarkably adaptive to sensory input. Dur-

ing an epoch of early development, exposure to the acoustic envi-
ronment can change sound representations without external
instructions or feedback (Zhang et al., 2001). Early studies indicate
that cortical sound representations are sensitive to simple statistics
of the sensory input such as frequency of occurrences: more fre-
quently experienced sounds gain larger cortical representations
(Zhang et al., 2001). More recent studies suggest that auditory cor-
tex is also sensitive to conditional probabilities (e.g., co-occurrence
of sounds in a sequence; Kover et al., 2013). Most importantly,
early experience-dependent reorganization of cortical acoustic repre-
sentations is correlated with altered perception and perceptual behav-
ior (Han et al., 2007; Kover et al., 2013). Here I will discuss recent
findings on the cortical mechanisms underlying developmental per-
ceptual learning. For more comprehensive reviews on cortical plas-
ticity and its perceptual consequences, please see Sanes & Bao
(2009) and Schreiner & Polley (2014).
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The developing auditory cortex selectively represents
animal vocalizations

Nature sounds typically comprise environmental sounds (e.g., wind,
water), animal vocalizations (including human speech) and non-
vocalization animal sounds (e.g., from footsteps, wing flaps). These
sounds carry different behavioral significances. Animal vocalizations
of the same and different species are likely to be crucial for repro-
duction and survival of the animal. By contrast, environmental
sounds are likely to be less important. Human infants preferentially
attend to speech over non-speech sounds (Vouloumanos & Werker,
2007), suggesting an intrinsic preference for behaviorally important
sounds. At the level of sensory neural processing, it would be
advantageous to preferentially allocate more neurons to process
behaviorally important sounds such as animal vocalizations (Wang
& Kadia, 2001; Garcia-Lazaro et al., 2006; Kim & Bao, 2013).
Among the different types of natural sounds, animal vocalizations

are arguably the most structured (Singh & Theunissen, 2003). They
are complex and diverse, but also have some common characteristics
that distinguish them from non-vocalization sounds. For example,
most vocalizations of mammals are repeated at an ethological range of
4–10 Hz (Liu et al., 2003; Schnupp et al., 2006). Human speech is
also temporally modulated (Rosen, 1992), and the temporal modula-

tion in the same ethological range is critical for human speech
perception (Elliott & Theunissen, 2009). By contrast, non-vocalization
sounds are often random in nature and are not repeated in the ethologi-
cal modulation range. Studies have indicated that sounds that are
repeatedly encountered in the ethological rate range become over-rep-
resented in the auditory cortex, i.e. more neurons become tuned to the
sounds (Zhang et al., 2001; Chang & Merzenich, 2003; de Villers-Si-
dani et al., 2008; Zhou et al., 2008; Insanally et al., 2009). Sounds
that are repeated at higher or lower rates are not over-represented
(Fig. 1 and Kim & Bao, 2009). Indeed, unmodulated sounds, similar
to a constant environmental sound, can retard cortical development
(Chang & Merzenich, 2003; de Villers-Sidani et al., 2008; Zhou
et al., 2008). Unmodulated sounds may even be under-represented in
the developing auditory cortex (de Villers-Sidani et al., 2008; Zhou
et al., 2008). This type of temporal repetition rate-dependent cortical
plasticity probably contributes to over-representation of conspecific
vocalizations in rat auditory cortex (Fig. 1 and Kim & Bao, 2013).

Statistics of the acoustic input shape cortical sound
representations

Humans and rodents are sensitive to stimulus statistics such as sim-
ple stimulus probability distributions and more complex transitional
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Fig. 1. Over-representation of sounds repeated at the ethological rates. (A) A schematic of ‘mix-rate’ rearing stimuli. A train of 15-kHz tones consisted of six
tone pips presented at the ethological rate (6 Hz), and a train of 5-kHz tones consisted of six tone pips presented at the fast rate (15 Hz). Trains of the two rep-
etition rates were interleaved such that one train was heard every 1.5 s. (B) Characteristic frequency (CF) map reorganization resulted from the mixed-rate rear-
ing. (Bi) Example maps of control and mixed-rate animals. Control animal is the same as seen in Fig. 2A. Areas representing 5 kHz � 0.2 octaves are outlined
in gray while areas representing 15 kHz � 0.2 octaves are outlined in black. (Bii) Distributions of CFs along the tonotopic axis. (Biii) Sizes of cortical areas
representing different frequency bands. There was a significant increase in representation at 15 kHz and a significant decrease at 20 kHz. (C) Cortical represen-
tation of ultrasonic frequencies. (Ci) An example CF map from a control animal mapped up to 74 kHz. Areas representing 25–50 kHz are outlined in blue
while areas representing 3.13–6.25 kHz are outlined in black. (Cii) Distribution of CFs along the tonotopic axis. (Ciii) Sizes of cortical areas representing one-
octave frequency bands. The representation of the 25–50 kHz band was significantly larger than those of the other. Error bars depict SEM. *P < 0.05,
**P < 0.001. This figure was originally published in Kim & Bao (2009).
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or conditional probability distributions (Saffran et al., 1996, 1999;
Maye et al., 2002; Toro & Trobalon, 2005; Pons, 2006). Electro-
physiological studies suggest that developing auditory cortex can
utilize these statistics to shape acoustic representations. Early studies
indicate that more neurons become tuned to repeatedly presented
(i.e., high probability) sounds (Zhang et al., 2001; Chang & Merze-
nich, 2003; de Villers-Sidani et al., 2008; Zhou et al., 2008; Insa-
nally et al., 2009). It may be hypothesized that the size of cortical
representation encodes stimulus probability (Simoncelli, 2009; Fi-
scher, 2010; Kover & Bao, 2010). A recent study indicated that
developing auditory cortex can also encode higher-order conditional
stimulus probability, i.e. the probability of sounds occurring in a
sequence played at the ethological rate (Kover et al., 2013). Sounds
that are presented in a sequence tend to be represented by the same
population of neurons, whereas sounds that are never presented in a
sequence tend to be represented by separate populations of neurons
(Fig. 2 and Kover et al., 2013). Rodent vocalizations occur in bouts
with similar temporal rates (Liu et al., 2003; Holy & Guo, 2005;
Kim & Bao, 2009, 2013). Early experience of those vocalizations

could thus theoretically lead to similar cortical representations, and
reduced perceptual contrast, of the individual calls despite their sub-
stantial trial-by-trial variability. By contrast, functionally different
call types (e.g., pup vs. adult encounter calls) that do not occur in
the same bout may be represented by distinct populations of neu-
rons, resulting in perceptual boundaries and categorical perception
of the calls (Ehret & Haack, 1981).

Experience-dependent cortical plasticity can account for
altered perceptual behaviors

How does statistical learning in the developing auditory cortex
impact perception and perceptual behavior? Early acoustic experi-
ence has a profound impact on auditory perception and perceptual
behaviors. Human fetuses gradually become sensitive to mother’s
voice and native speech during late gestation (Kisilevsky et al.,
2009; Kisilevsky & Hains, 2011), presumably due to acoustic expe-
rience in utero. Prenatal experience shapes perception and neural
responses to speech in neonatal infants (Nazzi et al., 1998; Partanen
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Fig. 2. Influences of higher-order stimulus statistics on spectral selectivity of primary auditory cortical neurons. (A) Schematics of the acoustic environments
that the animals experienced. The three acoustic environments had the same logarithmically uniform frequency distribution from 4 to 32 kHz and the same tem-
poral presentation rates, but differed in the conditional probabilities of the tonal frequencies within sequences. (B) Representative cortical maps. The sound
exposure did not alter the overall tonotopic characteristic frequency distribution. (C) Representative frequency-intensity receptive fields. The corresponding loca-
tions are marked on the tonotopic maps in B. The green vertical lines mark the low conditional probability boundary experienced by the half-range group. Stars
denote the characteristic frequency (CF) and triangles denote the center-of-mass frequency. Horizontal axis depicts frequency logarithmically from 1 to 32 kHz
and vertical axis depicts intensity from 10 to 80 dB SPL. (D) Tuning bandwidth at 60 dB SPL. Cyan, na€ıve control; dark blue, single-frequency; red, half-
range; green, full-range. Frequency tuning bandwidth became narrower in the single-frequency group and broader for the full-range group compared to control.
Error bars depict SEM. *P < 0.05 determined by an ANOVA with post hoc Tukey–Kramer test. This figure was originally published in Kover et al. (2013).
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et al., 2013). Language-specific perception and neural representation
of speech sounds continue to refine and consolidate during the first
year of life and beyond (Kuhl et al., 1992, 2006). A profound con-
sequence of early experience of speech sound is the sharpening of
categorical perception of native speech sounds: within-category per-
ceptual contrast is reduced and between-category contrast is
enhanced, resulting in more efficient recognition of native speech
sounds and often loss of sensitivity to some foreign phonemic con-
trasts (Kuhl et al., 1992, 2006; Iverson et al., 2003). Can cortical
statistical learning as shown in electrophysiological studies result in
categorical perception of conspecific vocalizations (Ehret & Haack,
1981)?
An early study examined perceptual consequences of early acous-

tic experience in rats (Han et al., 2007). Rats were exposure to a
7.1-kHz tone repeated at the ethological rate during the critical per-
iod of auditory cortical development. The animals were then placed
in a normal animal room for 1 month before being tested in a tonal
frequency difference detection task. The difficulty of the task was
carefully chosen to allow measurement of both improvement and
impairment of the performance. The results indicate that discrimina-
tion performance was impaired at the exposure frequency and
improved at the flanking frequencies (Fig. 3 and Han et al., 2007).
Subsequent electrophysiological examination of the primary auditory
cortex confirmed that the exposure frequency was over-represented
(Fig. 3). Although the impaired discrimination performance for
over-represented stimuli is somewhat counter-intuitive, it is consis-

tent with findings that discrimination between prototypical
exemplars of the same speech sounds is more difficult than discrimi-
nation between non-prototypical exemplars (Kuhl et al., 1992, 2006;
Iverson et al., 2003). This phenomenon, also known as the ‘percep-
tual magnet effect’, depends on speech sound experience and is spe-
cific to the native language (Kuhl, 1991). Thus, it appears that early
experience of speech sounds reduces the perceptual sensitivity to
subtle differences between prototypical exemplars of the same
speech sounds (Kuhl, 1991; Iverson et al., 2003). A computational
analysis indicates that the difference detection performance in the
sound-exposed animals can be quantitatively accounted for by their
cortical frequency representation (Fig. 3 and Han et al., 2007).
Recent probabilistic models of sensory perception suggest that the

percept of a stimulus may be shifted towards the stimuli with larger
representations (Simoncelli, 2009; Fischer, 2010; Kover & Bao,
2010). In one of the models, all neurons vote for their preferred
stimuli and their votes are weighed by their firing rates (Fischer,
2010). The model percept is shifted towards the stimulus with larger
representation because more neurons vote for it (Fischer, 2010).
Empirical observations support the probabilistic models (Fischer &
Pena, 2011; Girshick et al., 2011; Ganguli & Simoncelli, 2014). For
example, owls accurately localize sound sources near the center of
gaze but systematically underestimate peripheral source directions
(Fischer & Pena, 2011). This behavior is correlated with over-repre-
sentation of the space near the center of gaze and under-representa-
tion of lateral space (Fischer & Pena, 2011).

A

B C

D

E

Fig. 3. Experience-dependent cortical plasticity accounts for altered perceptual behaviors. (A) Representative cortical characteristic frequency maps from a 7.1-
kHz-exposed animal and a control animal. Neurons in outlined areas had characteristic frequencies in a range of 7.1 kHz � 0.2 octave. (B) Characteristic
frequency distribution along the tonotopic axis in control and 7.1-kHz-exposed groups. Note the clustering of CFs near 7.1 kHz in the 7.1-kHz-exposed animals.
(C) Percentage AI area representing frequencies in a 0.4-octave frequency band. The representations of 7.1 kHz � 0.2 octave were significantly larger in tone-
exposed animals (red) than in control animals (blue). (D) Comparison of the psychometric function of the model na€ıve AI and that of the na€ıve animals. Note
that the performances were scaled for comparison. (E) Comparison of performance of the model 7.1-kHz-exposed AI and that of the 7.1-kHz-exposed animals
in the frequency discrimination task. Discrimination of the over-represented frequencies was impaired, and that of under-represented frequencies was improved
to nearly the asymptotic 100% level. Error bars in D–E depict 95% confidence interval. This figure was originally published in Han et al. (2007).
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Higher-order stimulus probability can also shape perception and
perceptual behavior. For example, the transitional probability bound-
ary shown in Fig. 2 has been shown to result in a perceptual bound-
ary where difference detection performance is improved (Kover
et al., 2013). The altered behavior is correlated with segregated rep-
resentation of the two frequency bands divided by the probability
boundary, and steepened tuning curve slopes at the probability
boundary (Kover et al., 2013).

Early experience of natural sounds shapes categorical
sensory representation

Above studies suggest that early experience shapes categorical repre-
sentation and perception of sounds. However, they used simple tone
pips. Natural sounds are complex and highly structured. To investi-
gate whether natural sounds shape categorical auditory representa-
tion and perception, in a recently published study a group of
juvenile rats were exposed to a set of natural animal vocal sounds,
referred to as ‘jungle sounds’ (Bao et al., 2013). The jungle sounds
CD loop was an hour of spectrotemporally complex sounds, in
which there were at least 40 distinctive repeating motifs of bird
songs, mammalian vocalizations and insect sounds (for examples,
see Fig. 4A). Cortical neurons became more selective to spectrotem-

poral features in the experienced sounds (Bao et al., 2013). At the
neuronal population level, more neurons were involved in represent-
ing the whole set of complex sounds but fewer neurons actually
responded to each individual sound, and with greater firing rates
(Bao et al., 2013). A comparison of population-temporal responses
to the experienced complex sounds revealed that cortical responses
to different renderings of the same song motif were more similar,
indicating that the cortical neurons became less sensitive to natural
acoustic variations associated with stimulus context and sound ren-
derings (Fig. 4B). By contrast, cortical responses to sounds of dif-
ferent motifs became more distinctive, suggesting that cortical
neurons were tuned to the defining features of the experienced
sounds. These effects lead to emergent categorical representations of
the experienced sounds (Fig. 4C). Further behavioral studies are
needed to determine whether the jungle sound-exposure results in
behavioral categorical perception of the experienced sounds.

Cortical plasticity is a mechanism for warped and
categorical sound perception

Sensory representation and perception have two modes, continuous
and categorical, and they serve different purposes (Harnad, 1987).
For example, precise localization of sound in space would require
continuous and faithful representation of the auditory space. By con-
trast, recognition of vocalizations or speech sounds would be facili-
tated by categorical representation. Categorical perception is a result
of warped perceptual space, as the perceived difference between
stimuli is no longer proportional to their physical difference; stimuli
in a categorical center are perceived as being more similar, and
stimuli across categorical boundaries are perceived as being more
different, than they are (Harnad, 1987). The distortion may allow
the system to tune out of irrelevant stimulus variability and noises
that otherwise would interfere with the perception. Although cate-
gorical readout neurons, those that response selectively or exclu-
sively to a category of stimuli, are often found in prefrontal cortex
(Russ et al., 2007), the underlying neural computation and sensory
transformation may happen in the sensory cortex (Ohl et al., 2001;
Steinschneider et al., 2003; Chang et al., 2010; Tsunada et al.,
2011; Bathellier et al., 2012).
Early sensory exposure results in selective cortical representations

of experienced behaviorally important sounds (Zhang et al., 2001;
Chang & Merzenich, 2003; de Villers-Sidani et al., 2008; Zhou
et al., 2008; Insanally et al., 2009), and representational boundaries
that separate different categories of sounds (Kover et al., 2013).
These cortical reorganizations may lead to reduced perceptual sensi-
tivity near the over-represented sounds (Han et al., 2007), shift of
percept towards over-represented sounds (Fischer & Pena, 2011)
and enhanced perceptual sensitivity at the boundaries of sound cate-
gories (Kover et al., 2013). These perceptual distortions are hall-
marks of categorical perception. Thus, sensory exposure-induced
auditory cortical plasticity during early develop may be a mecha-
nism for learning perceptual categories.

Unsupervised learning solves the chicken-and-egg
problem in the sensory development

Mammalian sensory systems are remarkably adaptive to the ever-
changing environment. This is achieved through different types of
learning mechanisms. Supervised and reinforcement learning allow
for rapid improvement in sensory processing for stimuli that are
behaviorally relevant for the current and specific context. However,
these types of learning often require a certain level of sensory

A

B C1

C3C2

Fig. 4. Segregated representations of jungle song motifs instructed by early
experience. (A) Spectrogram of a section of the testing jungle sound stimuli
(duration, 4.5 s). Arrows with different colors indicate different song motifs.
(B) Cumulative distributions of response dissimilarities. Dissimilarities
between responses to different song motifs were plotted with thick lines, and
those to same song motifs were plotted with thin lines. (*P < 0.05,
**P < 0.005 compared with the other two groups). (C) Similarity relations
between responses to jungle sounds. Each dot represents a cortical popula-
tion-temporal response to a jungle sound. The distances between dots are
proportional to the dissimilarity between corresponding responses. The color-
coding for song motifs is the same as shown in A. Note that cortical
responses to different song motifs were sharply segregated in jungle sounds-
experienced animals (P < 0.05). This figure was originally published in Bao
et al. (2013).
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processing in order to understand instructions or feedback. In addi-
tion, the development of the supervised and reinforcement learning
mechanisms may also be experience-dependent, and require some
level of sensory processing. For example, it is impossible to teach
newborns speech in the more traditional and associative form
because they cannot understand verbal instructions, and their brain
learning systems are still developing.
The sensory system solves this ‘chicken-and-egg’ problem by

unsupervised, statistical learning. Neural circuits in the auditor sys-
tem organize themselves according to the statistical structures of the
sensory input, so that the sounds that are likely to be behaviorally
relevant, such as animal vocalizations, are preferentially and categor-
ically represented.

Cortical plasticity underlies perceptual learning

A central question in the field of auditory research is the role of cor-
tical plasticity in perceptual learning. Some studies have found cor-
relations between altered cortical stimulus representations and
perceptual learning (Recanzone et al., 1993; Ohl & Scheich, 1996;
Bao et al., 2004; Polley et al., 2004, 2006; Schnupp et al., 2006;
Han et al., 2007; Froemke et al., 2013), but others have failed to
observe those correlations (Talwar & Gerstein, 2001; Brown et al.,
2004; Reed et al., 2011; Ranasinghe et al., 2012). As evidence sup-
porting both views accumulates, it is increasingly evident that the
conclusion depends on the specifics of the tasks used to measure
behavioral performances as well as the types of plasticity effects that
are considered (Berlau & Weinberger, 2008). Some auditory tasks
preferentially measure procedure or motor learning, and involve cor-
responding brain substrates of learning. For example, classical con-
ditioning of simple movement to auditory stimuli appears to be
mediated by the brainstem and cerebellum (Thompson et al., 1997;
Bao et al., 2002), and can be retained even without the forebrain
(Mauk & Thompson, 1987). To avoid the confound of non-percep-
tual influences, tasks that require more sensory processing and less
procedure or motor learning are preferred for measuring perceptual
learning. Some perceptual tasks measure discrimination of subtle
differences between stimuli, while others examine how animals clas-
sify very different stimuli. Theoretical and experimental research
indicates that fine stimulus discrimination is better achieved by stee-
per tuning curve slopes, whereas stimulus classification along a large
stimulus continuum may be better served by strong responses at the
peaks of tuning curves (Butts & Goldman, 2006; Kim & Bao, 2008;
Simoncelli, 2009; Kover & Bao, 2010). The multi-dimensional corti-
cal plasticity (e.g., in characteristic frequency, tuning bandwidth,
tuning curve slopes, response magnitude, response timing etc.) could
have dramatically different effects on different behavioral tasks.
Appropriate behavior tests and quantitative models integrating differ-
ent aspects of cortical plasticity will help elucidate whether and how
cortical plasticity influences perception.

Summary

Based on the reviewed evidence, the following hypothetical model
emerges. During the critical period of auditory cortical development,
sounds with certain properties of natural vocalizations, such as tem-
poral repetition at an ethological rate, profoundly shape acoustic rep-
resentation in the auditory cortex. Vocalizations that are repeated at
the ethological rate in a bout, such as rat pup calls, are represented
similarly by a population of neurons. By contrast, different classes
of vocalizations that are not produced at the ethological rates in a
bout, such as pup and adult rat calls, are represented by separate

populations of neurons. The segregated representations of
vocalizations lead to perceptual shifts towards prototypical vocaliza-
tions and elevated perceptual contrasts between different classes of
vocalizations, resulting in categorical perception of the experienced
vocalizations. This model (i) considers categorical perception as a
functional outcome of experience-dependent sensory plasticity, (ii)
emphasizes the history of sensory experience in understanding how
the auditory system represents vocalizations and other ethologically
relevant natural sounds and (iii) hypothesizes a causal relationship
between sensory representations and perception. Further research that
integrates neurophysiological and neuroethological approaches under
a quantitative theoretical framework of categorical perception is
required to evaluate this model of developmental perceptual learning.
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